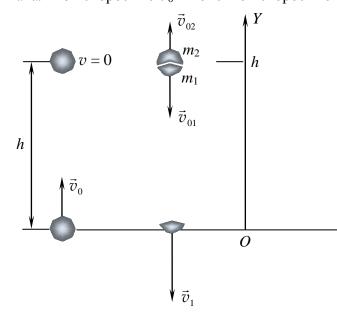

Начальная скорость снаряда, выпущенного из пушки вертикально вверх, равна $\upsilon_0 = 500$ м/с. В точке максимального подъема снаряд разорвался на два осколка. Первый упал на землю вблизи точки выстрела, имея скорость в 2 раза больше начальной, а второй — через t = 100 с после разрыва. Каково отношение масс осколков? Сопротивлением воздуха пренебречь. Ответ: $\frac{m_1}{m_2} = \frac{g^2 t^2 - \upsilon_0^2}{2 g t \upsilon_0 \sqrt{3}} \approx 0,43$

Решение:

1. Взрыв снаряда — достаточно быстрый процесс, внешние силы $(F_{\text{тяж}})$ малы по сравнению с внутренними, поэтому импульс системы «снаряд» сохраняется (Опорный конспект III, пункт 5: http://vkotov.narod.ru/3.pdf)


$$0 = m_1 \vec{v}_{01} + m_2 \vec{v}_{02}$$

Если два вектора в сумме дают ноль, то модули этих векторов равны.

$$m_1 v_{01} = m_2 v_{02}$$

$$\frac{m_1}{m_2} = \frac{v_{02}}{v_{01}}$$
(1)

2. Найдем высоту h, на которой произошел взрыв. Для этого можно использовать закон сохранения энергии $(\frac{mv_0^2}{2} = mgh)$ или кинематическое уравнение равнозамедленного движения с ускорением g, начальной скоростью v_0 и конечной скоростью v=0 $(2gh=v_0^2)$.

$$h = \frac{v_0^2}{2g} \tag{2}$$

3. Запишем закон сохранения энергии для первого осколка (E_1 ' - энергия сразу после взрыва,

$$E_1$$
" - энергия перед падением)

$$E_1' = E_1''$$

$$m_1gh + \frac{m_1v_{01}^2}{2} = \frac{m_1v_1^2}{2}$$

Подставим сюда h из формулы (2) и $v_1 = 2v_0$ (из условия), затем выразим v_{01} :

$$v_{01} = v_0 \sqrt{3} \tag{3}$$

4. Для второго осколка запишем уравнение движения в координатной форме:

$$y = y_0 + v_{0y}t + \frac{a_y t^2}{2} \implies 0 = h + v_{02}t - \frac{gt^2}{2}$$

Подставим в последнюю формулу h из уравнения (2) и выразим v_{02} : $v_{02} = \frac{g^2 t^2 - v_0^2}{2gt}$ (4)

Подставив в формулу (1) v_{01} и v_{02} из формул (3) и (4), получим ответ.