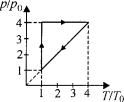
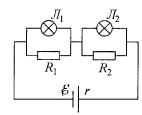
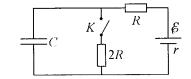
Олимпиада «Покори Воробьевы горы – 2009». Очный тур


- 1. Дождевая капля, покинув облако на большой высоте, падает вертикально. Через некоторое время ее скорость стала равной по модулю 2 м/с.В этот момент модуль ускорения капли стал равным 8,4 м/с 2 . Под каким углом к вертикали будет наклонен след, который эта капля оставит на боковом стекле автомобиля, движущегося прямолинейно по горизонтальной дороге со скоростью, модуль которой равен 12 км/ч? Считайте, что действующая на каплю сила сопротивления воздуха прямо пропорциональна её скорости. Ответ: $\alpha = \arctan(10/7)$
- **2.** Два груза, соединенные легкой пружиной жесткостью k, соскальзывают с плоскости, образующей угол α с горизонталью. При этом длина пружины остаётся неизменной и равной l. Масса нижнего груза равна m_1 а коэффициент его трения о плоскость равен μ_1 . Масса верхнего груза равна m_2 , а коэффициент его трения о плоскость равен μ_2 . Определите модуль ускорения грузов и длину пружины в недеформированном состоянии.


Otbet:
$$a = g \left[\sin \alpha - \frac{\mu_1 m_1 + \mu_2 m_2}{m_1 + m_2} \cos \alpha \right], \quad l_0 = l - \frac{m_1 m_2}{m_1 + m_2} \cdot \frac{(\mu_2 - \mu_1) g \cos \alpha}{k}$$

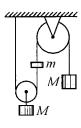
- 3. Маленький шарик массой m, подвешенный к потолку комнаты на невесомой и нерастяжимой нити, смещают так, чтобы нить была слегка натянута и образовывала с вертикалью угол $\alpha < 90^\circ$. Затем шарик отпускают без начальной скорости. Пренебрегая влиянием воздуха, определите модуль силы натяжения нити в тот момент, когда направление ускорения шарика и ось нити совпадают. Ответ: $F = (3 2\cos\alpha)mg$
- 4. На горизонтальной крышке стола лежит кубик. Коэффициент трения кубика о крышку равен μ . Середины боковой грани кубика касается небольшой шарик, подвешенный к потолку на легкой нерастяжимой нити длиной L. Массы кубика и шарика одинаковы. Шарик отклонили от исходного положения так, чтобы нить была слегка натянута, образовывала с вертикалью угол α и располагалась в вертикальной плоскости, проходящей через центр кубика перпендикулярно его грани. Затем шарик отпустили без начальной скорости. Определить расстояние, на которое переместится кубик по крышке стола после удара шарика. Соударение шарика с кубиком считать абсолютно упругим. Ответ: $L(1-\cos\alpha)/\mu$
- **5.** В горизонтальной достаточно длинной гладкой трубе между двумя поршнями массой M каждый находится один моль идеального одноатомного газа. В остальных частях трубы создан вакуум. В некоторый момент времени абсолютная температура газа была равна T_0 , а поршни двигались навстречу друг другу со скоростями, модули которых равны v_1 и v_2 . Пренебрегая теплообменом газа с окружающими телами, найдите температуру T газа в тот момент,

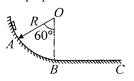
когда его давление станет максимальным. Процесс сжатия газа считайте равновесным. Ответ: $T = T_0 + \frac{M(v_1 + v_2)^2}{6R}$


- **6.** В цилиндре под поршнем содержится воздух с парами воды при температуре $t=100\,^{\circ}$ С и нормальном атмосферном давлении. Относительная влажность воздуха f=80%. Определите установившееся в цилиндре давление после изотермического уменьшения объема влажного воздуха в n=2 раза. Ответ: $p_{\kappa}=p_{\rm a}[1+n(1-f)]\approx 0,14\,{\rm M}\Pi{\rm a}$
- 7. Цикл теплового двигателя, в котором в качестве рабочего тела используется некоторое количество одноатомного идеального газа, в координатах давление температура имеет виде прямоугольного треугольника, показанного на рисунке. Определите КПД этого теплового двигателя. Ответ: $\eta = (6 2\ln 4)/15 \approx 0,215$

- **8.** В схеме, представленной на рисунке, лампы J_1 и J_2 рассчитаны на напряжения $U_1=2,5$ В и $U_2=6,3$ В и мощности $N_1=0,5$ Вт и $N_2=1,4$ Вт соответственно. ЭДС и внутреннее сопротивление источника тока равны: $\mathcal{E}=9$ В, r=0,8 Ом. Чему равны сопротивления R_1 и R_2 , если обе лампы горят нормальным накалом? Ответ: $R_1=50$ Ом, $R_2=226,8$ Ом
- **9.** В схеме, изображенной на рисунке, ключ K достаточно долгое время был замкнут. Какое количество теплоты

выделится в сопротивлении R после размыкания ключа? Излучением пренебречь. Параметры элементов схемы даны на рисунке. Ответ: $Q_R = \frac{(R+r)RC}{2(3R+r)^2} \mathcal{E}^2$



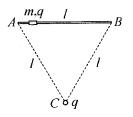

- **10.** В показанной на рисунке схеме оба конденсатора были предварительно разряжены, а ключи разомкнуты. После замыкания ключа K_1 через достаточно большой промежуток времени замыкают ключ K_2 . Найти количество теплоты, которое может дополнительно выделиться в схеме после замыкания ключа K_2 . Параметры элементов указаны на схеме. Ответ: $\Delta Q = (C \mathcal{E})^2/(2(C_1 + C_2))$
- 11. Квадратную рамку, изготовленную из тонкой жесткой проволоки, поместили в однородное магнитное поле так, чтобы её плоскость была перпендикулярна вектору индукции \vec{B} магнитного поля. Длина стороны рамки равна a. С какой угловой скоростью нужно вращать рамку вокруг одной из ее сторон, чтобы амплитуда ЭДС в рамке была равна \mathcal{E} ? Считать, что сопротивление рамки достаточно велико. Ответ: $\omega = \mathcal{E}/(Ba^2)$
- **12.** Тонкая прямая палочка размещена перпендикулярно главной оптической оси тонкой линзы так, что один из ее концов находится на этой оси. Линза дает действительное изображение палочки с увеличением k. Расстояние между палочкой и изображением, отсчитываемое вдоль оси линзы, равно d. Найти фокусное расстояние линзы. Ответ: $F = kd/(1+k)^2$

Олимпиада «Ломоносов - 2009».

- 1. Колесо радиусом R катится без проскальзывания по горизонтальной плоскости. При этом центр колеса движется прямолинейно с постоянным ускорением $a_{\rm II}$. Найти модуль ускорения верхней точки колеса в момент времени, когда скорость центра колеса будет равна $v_{\rm II}$. Ответ: $a = \sqrt{4a_{\rm II}^2 + (v_{\rm II}^2/R)^2}$
- **2.** На гладкой невесомой нерастяжимой нити, один конец которой прикреплен к потолку, подвешен блок. Другой конец этой нити прикреплен к грузу массой m. К этому грузу прикреплена вторая такая же нить, переброшенная через закрепленный блок. К свободному концу второй нити прикреплен груз массой M, как показано на рисунке. Масса подвижного блока с подвешенным к его оси грузом равна M. Отрезки нитей, не лежащие на блоках, вертикальны. Первоначально груз массой M, прикрепленный ко второй нити, удерживали неподвижным, а затем его отпустили. Найти ускорение a_1 подвижного блока для моментов времени, когда грузы еще не касаются блоков. Ответ: $a_1 = (2m M)g/(5M + 4m)$

3. Профиль снежной горки, показанный на рисунке, представляет собой дугу окружности радиусом R = 10 м с

плавным выходом на горизонтальную плоскость BC. Поверхность горки гладкая, а горизонтальная плоскость шероховатая. На каком расстоянии l (в точке C) от конца горки (точки B) остановятся съехавшие с горки санки, если в точке A их полное ускорение было равно по модулю ускорению свободного падения g, а коэффициент трения санок о плоскость $\mu = 0.15$? Радиус дуги окружности, проведенный в точку A, образует с вертикалью угол 60° .


Ответ: $l = 3R/(4\mu) = 50$ м

- **4.** В кабине лифта, движущейся вертикально вниз с постоянной скоростью u, роняют шарик. В момент подлета шарика к полу его скорость относительно Земли вертикальна и равна v. Соотношение скоростей u и v таково, что после абсолютно упругого удара о пол шарик относительно Земли продолжает двигаться вниз. Определите максимальное расстояние h между шариком и полом кабины лифта после удара. Ответ: $h = (v u)^2/(2g)$
- **5.** Тонкая неоднородная палочка постоянного сечения S и длиной L, центр тяжести которой находится на расстоянии 0,25 L от одного из ее концов, лежит на горизонтальном дне сосуда. Масса палочки m. Сосуд заполняют жидкостью. При какой плотности ρ жидкости палочка в сосуде сможет принять вертикальное положение при достаточно высоком уровне жидкости? Ответ: $2m/(LS) > \rho > m/(2LS)$
- 6. В системе, изображенной на рисунке, брусок массой *т* лежит на гладкой горизонтальной плоскости а пружины 1 и 2 сильно растянуты. Оси пружин и нерастяжимые нити горизонтальны и лежат в одной вертикальной плоскости с центром масс бруска. Коэффициенты жесткости пружин одинаковы и равны *k*. Брусок смещают на малое расстояние вдоль оси *OX*. Определить период колебаний бруска после его отпускания. Массой блока, пружин, нитей и трением пренебречь.

Otbet:
$$T = 4\pi \sqrt{\frac{m}{5k}}$$

- 7. Моль гелия при нагревании получил количество теплоты Q. При этом давление газа увеличивалось пропорционально его объему, а среднеквадратичная скорость теплового движения его атомов возросла в n раз. Найти абсолютную температуру T_0 газа перед началом нагревания. Ответ: $T_0 = Q/(2(n^2 1)R)$
- 8. В гладком цилиндре I под поршнем массой m=5 кг находится идеальный газ. Цилиндр I соединен трубкой, снабженной краном, с таким же цилиндром 2, как показано на рисунке. Во втором цилиндре под поршнем массой M=10 кг находится такой же газ, как и в цилиндре I. В начальном состоянии кран K закрыт, а поршень в цилиндре 2 находится на высоте H=35 см от дна. На какое расстояние Δh переместится поршень в цилиндре I после открывания крана? Температура газа в первом цилиндре в течение всего процесса поддерживается постоянной и равной $T_1=300$ K, а во втором цилиндре постоянной и равной $T_2=350$ K. Объемом трубки с краном пренебречь, атмосферное давление не учитывать. Толщина поршней больше диаметра соединительной трубки. Ответ: $\Delta h = MT_1H/(mT_2)=60$ см
- 9. Определенное количество аргона изохорически нагрели до некоторой температуры. Затем абсолютную температуру газа увеличивали пропорционально объему по закону $T = \alpha V$ до такой величины, что при последующем охлаждении по закону $T = \beta V^2$ газ перешел в начальное состояние. Найти КПД указанного цикла, зная начальный объем газа V_1 и постоянные коэффициенты α и β . Ответ: $\eta = (\alpha \beta V_1)/(5\alpha + 3\beta V_1)$
- **10.** Масса влажного воздуха, занимающего объем V=1 л при температуре t=27 °C , давлении p=86,5 кПа и относительной влажности f=0,4 равна m=1 г. Определить давление насыщенных паров при заданной температуре. Считать молярную массу сухого воздуха равной $\mu_{\rm B}=29$ г/моль, а молярную массу паров $\mu_{\rm H}=18$ г/моль. Ответ: $p_{\rm H}=(pm_{\rm B}V-mRT)/((\mu_{\rm B}-\mu_{\rm H})fV)\approx3,52$ кПа

11. Маленькая муфта массой m, имеющая заряд q, может скользить без трения по гладкому горизонтальному непроводящему стержню AB длиной l (см. рис.). В точке C, расположенной на расстоянии l от точек A и B, закреплен маленький шарик, на котором помещен такой же заряд q. Первоначально муфту удерживают в точке A. Какую минимальную по модулю скорость v_{\min} нужно сообщить муфте, чтобы она могла достичь точки B? Потерями энергии на излучение пренебречь. Электрическая постоянная ε_0 .

Otbet:
$$v_{\min} = \frac{q}{\sqrt{2\pi\epsilon_0 ml}} \sqrt{\frac{2}{\sqrt{3}} - 1}$$

12. На гладкой горизонтальной непроводящей плоскости с диэлектрической проницаемостью $\varepsilon=1$, расположенной в однородном вертикальном магнитном поле с индукцией B, удерживают на расстоянии L друг от друга две маленькие одинаковые шайбы. Масса каждой шайбы равна m. Шайбы имеют равные по модулю, но противоположные по знаку заряды. В некоторый момент времени шайбы одновременно отпускают без начальной скорости. Найти минимальное расстояние L_{\min} между шайбами, зная, что в процессе движения они не сталкиваются. Потерями энергии на излучение

пренебречь. Ответ:
$$L_{\min} = \frac{1}{2} L \left[1 - \sqrt{1 - \frac{4m}{\pi \varepsilon_0 B^2 L^3}} \right]$$

- 13. На цилиндрическую проволочную катушку надето проводящее кольцо с малой индуктивностью, покрытое изоляцией. Плоскость кольца перпендикулярна оси катушки. При равномерном нарастании тока в катушке от нуля до $I_1 = 5$ A за время $t_1 = 9$ с в кольце выделяется количество теплоты $Q_1 = 0.5$ Дж. Какое количество теплоты Q_2 выделится в кольце, если ток в катушке будет равномерно возрастать от нуля до $I_2 = 10$ A за время $I_2 = 3$ с? В обоих случаях кольцо удерживают неподвижным относительно катушки. Ответ: 6 Дж
- 14. Контур состоит из конденсатора емкостью C=0,1 мкФ и катушки индуктивностью L=10 мкГн. Сопротивление катушки равно R=0,05 Ом. Катушка и конденсатор последовательно подключены к источнику гармонического напряжения, частота которого равна собственной частоте контура. Определить среднюю мощность, потребляемую контуром от источника, если амплитуда напряжения на конденсаторе остается практически неизменной и равной $U_0=20$ В. Ответ: 0,1 Вт
- **15.** К тонкой собирающей линзе со скоростью v, образующей малый угол α с ее главной оптической осью, приближается точечный источник света S. Траектория движения источника пересекает главную оптическую ось в точке, находящейся на расстоянии c от линзы, превышающем её фокусное расстояние F. Найти модуль и направление скорости u движения изображения S_1 этого источника в тот момент, когда он находился на расстоянии a > F от линзы. Ответ: $u \approx vF^2/(a-F)^2$
- 16. На закрепленный зеркальный шар радиусом R падает узкий параллельный пучок света мощностью N. Ось падающего пучка света проходит на расстоянии a от центра шара. Найти силу F, с которой свет действует на шар.

Скорость света
$$c$$
. Ответ: $F = 2\frac{N}{c}\sqrt{1 - \frac{a^2}{R^2}}$