Тренировочный вариант №5 ЕГЭ по ФИЗИКЕ

Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 4 часа (240 минут). Работа состоит из 3 частей, включающих 35 заданий.

Часть 1 содержит 25 заданий (A1–A25). К каждому заданию дается 4 варианта ответа, из которых правильный только один.

Часть 2 содержит 4 задания (B1–B4), в которых ответ необходимо записать в виде набора цифр.

Часть 3 состоит из 6 задач (С1–С6), для которых требуется дать развернутые решения.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Внимательно прочитайте каждое задание и предлагаемые варианты ответа, если они имеются. Отвечайте только после того, как вы поняли вопрос и проанализировали все варианты ответа.

Выполняйте задания в том порядке, в котором они даны. Если какое-то задание вызывает у вас затруднение, пропустите его. К пропущенным заданиям можно будет вернуться, если у вас останется время.

Баллы, полученные вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначе-	Множи-	Наимено-	Обозначе-	Множи-
вание	ние	тель	вание	ние	тель
гига	Γ	10 ⁹	санти	c	10^{-2}
мега	M	10 ⁶	милли	M	10^{-3}
кило	К	$10^{\ 3}$	микро	MK	10^{-6}
гекто	Γ	10 ²	нано	Н	10^{-9}
деци	Д	10^{-1}	пико	П	10^{-12}

Константы	
число π	$\pi = 3,14$
ускорение свободного падения на Земле	$\pi = 3.14$ $g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2 / \text{kg}^2$
универсальная газовая постоянная	$R = 8,31 \; \text{Дж/(моль·К)}$
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_{\rm A} = 6 \cdot 10^{23} {\rm моль}^{-1}$
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\varepsilon_0} = 9.10^9 \text{ H} \cdot \text{m}^2/\text{K} \text{m}^2$
молуль заряда электрона (элементарный	10

модуль заряда электрона (элементарный	$e = 1,6 \cdot 10^{-19} \text{ Кл}$
электрический заряд)	,
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{c}$

Соотношение меж	Соотношение между различными единицами			
температура		$0 \text{ K} = -273^{\circ}\text{C}$		
атомная единица м	ассы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг		
1 атомная единица	массы эквивалентна	931,5 МэВ		
1 электронвольт		$1 ext{ } $		
Масса частиц				
электрона	$9,1\cdot10^{-31}$ kg $\approx 5,5\cdot10^{-4}$			
протона	$1,673\cdot10^{-27}$ KT ≈ $1,007$	7 а.е.м.		
нейтрона	$1,675 \cdot 10^{-27} \text{ кг} \approx 1,008$	3 а.е.м.		

Плотность		подсолнечного масла	900 кг/м ³
воды	1000кг/м^3	алюминия	$2700 \ \kappa \Gamma / M^3$
древесины (сосна)	400 кг/м^3	железа	$7800 \ \kappa \Gamma / \text{m}^3$
керосина	800 кг/м ³	ртути	13600 кг/м ³

Удельная теплоемкость			
воды $4.2 \cdot 10^3$ Дж/(кг·К)		алюминия	900 Дж/(кг∙К)
льда 2,1·10 ³ Дж/(кг·К)		меди	380 Дж/(кг⋅К)
железа 460 Дж/(кг·К)		чугуна	500 Дж/(кг·К)
свинца 130 Дж/(кг-К)			' ()
Удельная теплота			
парообразования воды	$2,3\cdot10^{6}$ Дж/кг		
плавления свинца	$2,5\cdot 10^4$ Дж/кг		
плавления льда	3,3·10 ⁵ Дж/кг		

Нормальны	е условия.	: давление	$10^5 \Pi a$, температура 0°	C	
Молярная м	ласса				
азота	$28 \cdot 10^{-3}$	кг/моль	кислорода	$32 \cdot 10^{-3}$	кг/моль
аргона	$40 \cdot 10^{-3}$	кг/моль	лития	6.10^{-3}	кг/моль
водорода	$2 \cdot 10^{-3}$	кг/моль	молибдена	$96 \cdot 10^{-3}$	кг/моль
воздуха	$29 \cdot 10^{-3}$	кг/моль	неона	$20 \cdot 10^{-3}$	кг/моль
гелия	4.10^{-3}	кг/моль	углекислого газа	44.10^{-3}	кг/моль

При выполнении заданий части 1 в бланке ответов № 1 под номером выполняемого вами задания (A1-A25) поставьте знак «x» в клеточке, номер которой соответствует номеру выбранного вами ответа.

	Tono Spoulario popularani no propy a nonani noŭ akonoazi la 20 m/a. Vakon manuni
A 1	тело орошено вертикально вверх с начальной скоростью 20 м/с. Каков модуль
AI	Тело брошено вертикально вверх с начальной скоростью 20 м/с. Каков модуль скорости тела через 0,5 с после начала движения? Сопротивление воздуха не
	учитывать.

- 1) 5 m/c 2) 10 m/c 3) 15 m/c 4) 20 m/c

В инерциальной системе отсчета сила \vec{F} сообщает телу массой m ускорение **A2** \vec{a} . Как надо изменить величину силы, чтобы при уменьшении массы тела вдвое его ускорение стало в 4 раза больше?

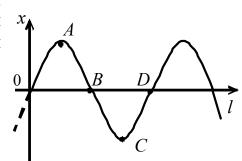
- 1) увеличить в 2 раза
- 2) увеличить в 4 раза
- 3) уменьшить в 2 раза
- 4) оставить неизменной

A3 Девочка кидает мяч с балкона дома под углом к горизонту. Сила тяжести действует на мяч

- 1) только в момент броска
- 2) только в момент наивысшего подъема
- 3) только когда мяч начинает падать вниз после подъема
- 4) во всех этих трех случаях

Отношение массы грузовика к массе легкового автомобиля $\frac{m_1}{m_2} = 3$. Каково **A4**

отношение их скоростей $\frac{v_1}{v_2}$, если отношение импульса грузовика к импульсу

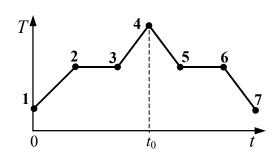

легкового автомобиля равно 3?

1) 1

2) 2

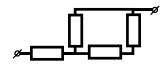
- 3) 3
- 4) 5

- Товарный вагон, движущийся по горизонтальному пути с небольшой **A5** скоростью, сталкивается с другим вагоном и останавливается. При этом пружина буфера сжимается. Какое из перечисленных ниже преобразований энергии происходит в этом процессе?
 - 1) Кинетическая энергия вагона преобразуется в потенциальную энергию пружины.
 - 2) Кинетическая энергия вагона преобразуется в его потенциальную энергию.
 - 3) Потенциальная энергия пружины преобразуется в её кинетическую энергию.
 - 4) Внутренняя энергия пружины преобразуется в кинетическую энергию вагона.
- На рисунке изображена поперечная волна, **A6** распространяющаяся по шнуру, в некоторый момент времени. Разность фаз колебаний точек А и С равна


- 1) $\pi/4$
- 2) $\pi/2$
- 3) π
- 4) 2π
- Подвешенный на нити грузик совершает гармонические колебания. В **A7** таблице представлены координаты грузика через одинаковые промежутки времени. Какова, примерно, максимальная скорость грузика?

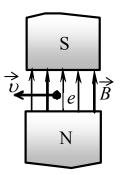
<i>t</i> , c	0	0,1	0,2	0,3	0,4	0,5	0,6	0,7
x, cm	6	3	0	3	6	3	0	3

- 1) 1,24 m/c 2) 0,47 m/c
- 3) 0.62 m/c
- 4) 0.16 m/c


- Броуновским движением называется **A8**
 - 1) упорядоченное движение слоев жидкости (или газа)
 - 2) упорядоченное движение твердых частиц вещества, взвешенных в жидкости (или газе)
 - 3) конвекционное движение слоев жидкости при ее нагревании
 - 4) хаотическое движение видимых твердых частиц вещества, взвешенных в жидкости (или газе)

- **А9** Концентрация молекул газа в сосуде снизилась в 3 раза, а давление газа возросло в 2 раза. Следовательно, средняя кинетическая энергия теплового движения молекул газа
 - 1) увеличилась в 2 раза
 - 2) увеличилась в 6 раз
 - 3) уменьшилась в 1,5 раза
 - 4) уменьшилась в 3 раза
- $oxed{A10}$ Кристаллическое вещество с помощью нагревателя равномерно нагревали от 0 до момента t_0 . Потом нагреватель выключили. На графике представлена зависимость температуры T вещества от времени t. Какой участок соответствует процессу нагревания вещества в жидком состоянии?

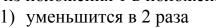
- 1) 5–6
- 2) 2–3
- 3) 3–4
- 4) 4–5
- **A11** В каком случае внутренняя энергия воды не изменяется?
 - 1) при ее переходе из жидкого состояния в твердое
 - 2) при увеличении скорости сосуда с водой
 - 3) при увеличении количества воды в сосуде
 - 4) при сжатии воды в сосуде
- Чтобы нагреть 96 г молибдена на 1 К, нужно передать ему количество **A12** теплоты, равное 24 Дж. Чему равна удельная теплоемкость этого вещества?
 - 1) 0,92 кДж/(кг⋅К)
 - 2) 24 Дж/(кг⋅К)
 - 3) 4.10^{-3} Дж/(кг·К)
 - 4) 250 Дж/(кг-К)
- A13
 Расстояние между двумя точечными электрическими зарядами увеличили в 2 раза, а один из зарядов уменьшили в 2 раза. Сила электрического взаимодействия между ними
 - 1) не изменилась
 - 2) уменьшилась в 2 раза
 - 3) увеличилась в 2 раза
 - 4) уменьшилась в 8 раз


А14 В цепи, схема которой изображена на рисунке, сопротивление каждого резистора равно 3 Ом. Полное сопротивление цепи равно

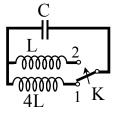
- 1) 12 O_M
- 2) 7,5 O_M
- 3) 5 Om
- 4) 4 O_M

A15

Электрон e, влетевший в зазор между полюсами электромагнита, имеет скорость $\overrightarrow{\upsilon}$, перпендикулярную вектору индукции \overrightarrow{B} магнитного поля, направленному вертикально (см. рисунок). Куда направлена действующая на него сила Лоренца \overrightarrow{F} ?



- 1) от наблюдателя \otimes
- 2) к наблюдателю ⊙
- 3) горизонтально вправо \rightarrow
- 4) вертикально вниз ↓


A16

A17

Как изменится частота собственных электромагнитных колебаний в контуре (см. рисунок), если ключ К перевести из положения 1 в положение 2?

- 2) увеличится в 2 раза
- 3) уменьшится в 4 раза
- 4) увеличится в 4 раза

Разложение пучка солнечного света в спектр при прохождении его через призму объясняется тем, что свет состоит из набора электромагнитных волн разной длины, которые, попадая в призму,

- 1) движутся с разной скоростью
- 2) имеют одинаковую частоту
- 3) поглощаются в разной степени
- 4) имеют одинаковую длину волны

A18

Согласно специальной теории относительности, скорость света в вакууме

- **А.** всегда больше скорости движения массивных объектов в любой инерциальной системе отсчета.
- **Б.** не зависит от скорости движения источника света. Какое из утверждений правильно?
- 1) только А
- только Б
- 3) и А, и Б
- 4) ни А, ни Б

A19

Колебания силы тока в цепи, содержащей идеальную катушку, описываются $I = 0.8 \cdot \sin\left(\frac{25}{2}\pi t\right)$, где все величины выражены СИ. Индуктивность катушки равна 0,5 Гн. Определите амплитуду напряжения на катушке.

- 1) 10 B
- 2) $5\pi B$
- 3) 0.5π B
- 4) 0,5 B

A20

Один лазер излучает монохроматический свет с длиной волны $\lambda_1 = 400$ нм, другой – с длиной волны $\lambda_2 = 600$ нм. Отношение импульсов $\frac{p_1}{p_2}$ фотонов,

- излучаемых лазерами, равно

- 2) $\frac{2}{3}$ 3) $\sqrt{\frac{3}{2}}$

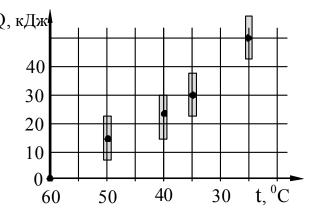
Какая из строчек таблицы правильно отражает структуру ядра $^{132}_{50}\,\mathrm{Sn}$?

A21

	р – число протонов	n — число нейтронов
1)	132	182
1)		102
2)	132	50
3)	50	132
4)	50	82

A22

Укажите пропущенную частицу Х в ядерной реакции $_{7}^{14}$ N + $_{2}^{4}$ He \longrightarrow $_{8}^{17}$ O + X.

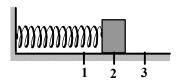

- 1) α-частица
- протон
- 3) нейтрон
- 4) β-частица

A23

Красная граница фотоэффекта исследуемого металла соответствует длине волны $\lambda_{\text{\tiny KD}} = 600$ нм. При освещении этого металла светом длиной волны λ максимальная кинетическая энергия выбитых из него фотоэлектронов в 3 раза меньше энергии падающего света. Какова длина волны λ падающего света?

- 1) 133 нм
- 2) 300 нм
- 3) 400 HM
- 4) 1200 HM

- **A24** Ученик изучал в школьной лаборатории колебания математического маятника. Результаты измерений каких величин дадут ему возможность рассчитать период колебаний маятника?
 - 1) массы маятника *m* и знание табличного значения ускорения свободного падения g
 - 2) длины нити маятника l и знание табличного значения ускорения свободного падения g
 - 3) амплитуды колебаний маятника A и его массы m
 - 4) амплитуды колебаний маятника A и знание табличного значения ускорения свободного падения g
- **A25** Измеряли, какое количество О, кДж теплоты отдает 1 кг изучаемого вещества при остывании до той или иной температуры. Погрешности измерения количества теплоты и температуры составляли соответственно 8 кДж и 0,5°C. Результаты измерений с учетом их погрешности представлены Чему примерно рисунке.


удельная теплоемкость данного вещества?

- 1) 2,7 кДж/(кг⋅К)
- 2) 2,0 кДж/(кг·К)
- 3) 0,4 кДж/(кг⋅К)
- 4) 1,4 кДж/(кг⋅К)

Ответом к заданиям этой части (B1-B4) является последовательность цифр. Впишите ответы сначала в текст работы, а затем перенесите их в бланк ответов № 1 справа от номера соответствующего задания, начиная с первой клеточки, без пробелов и каких-либо дополнительных символов. Каждую цифру пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами.

B1

B2

Груз изображенного на рисунке пружинного маятника совершает гармонические колебания между точками 1 и 3. Пружину маятника заменили на другую с меньшей жесткостью, а амплитуду колебаний оставили прежней.

Как изменятся при этом период колебаний, максимальная потенциальная энергия маятника и его максимальная кинетическая энергия?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Период	Максимальная	Максимальная
колебаний	потенциальная энергия	кинетическая энергия
	маятника	маятника

Частица массой m, несущая заряд q, движется в однородном магнитном поле с индукцией B по окружности радиуса R со скоростью υ .

Как изменится радиус траектории, период обращения и кинетическая энергия частицы, если в том же магнитном поле с той же скоростью будет двигаться частица массой m, но имеющая больший заряд?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличится
- 2) уменьшится
- 3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Радиус траектории	Период обращения	Кинетическая энергия

B3

Установите соответствие между физическими величинами и приборами, при помощи которых их можно измерить. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите <u>в таблицу</u> выбранные цифры под соответствующими буквами.

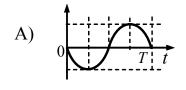
ФИЗИЧЕСКАЯ ВЕЛИЧИНА

ПРИБОР

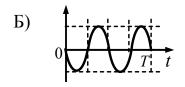
- A) Атмосферное давление у подножия горы
- психрометр
 барометр
- Б) Давление воздуха в шине автомобиля
- 3) гигрометр
- 4) манометр

A	Б

B4



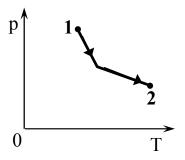
Конденсатор включен в цепь переменного тока (см. рисунок). В момент времени t=0 заряд левой обкладки конденсатора максимален. Графики А и Б представляют изменения физических величин, характеризующих колебания в цепи переменного тока.


Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

ГРАФИКИ

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) емкостное сопротивление X_C
- 2) напряжение на конденсаторе U_C
- 3) сила тока в цепи I
- 4) мощность тока на конденсаторе IU_C



A	Б

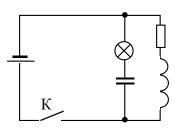
Задания C1—C6 представляют собой задачи, полное решение которых необходимо записать в бланке ответов № 2. Рекомендуется провести предварительное решение на черновике. При оформлении решения в бланке ответов № 2 запишите сначала номер задания (C1, C2 и т.д.), а затем решение соответствующей задачи. Ответы записывайте четко и разборчиво.

C1

На диаграмме (см. рисунок) показан процесс изменения состояния идеального одноатомного газа. Опираясь на свои знания по молекулярной физике, объясните, как меняется объем газа по мере его перехода из состояния 1 в состояние 2.

Полное правильное решение каждой из задач С2—С6 должно включать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчеты с численным ответом и, при необходимости, рисунок, поясняющий решение.

C2


Грузовой автомобиль с двумя ведущими осями массой M=4 т тянет за нерастяжимый трос вверх по уклону легковой автомобиль массой m=1 т, у которого выключен двигатель. С каким максимальным ускорением могут двигаться автомобили, если угол уклона составляет $\alpha = \arcsin 0,1$, а коэффициент трения между шинами грузового автомобиля и дорогой $\mu = 0,2$? Силой трения качения, действующей на легковой автомобиль, пренебречь. Массой колес пренебречь.

C3

Воздушный шар объемом 2500 м^3 и массой оболочки 400 кг имеет внизу отверстие, через которое воздух в шаре нагревается горелкой. До какой минимальной температуры нужно нагреть воздух в шаре, чтобы он взлетел вместе с грузом (корзиной и воздухоплавателем) массой 200 кг? Температура окружающего воздуха 7^0C , его плотность $1,2 \text{ кг/м}^3$. Оболочку шара считать нерастяжимой.

C4

В электрической цепи, показанной на рисунке, ЭДС источника тока равна 12 В; емкость конденсатора 2 мФ; индуктивность катушки 5 мГн, сопротивление лампы 5 Ом и сопротивление резистора 3 Ом. В начальный момент времени ключ К замкнут. Какая энергия

выделится в лампе после размыкания ключа? Внутренним сопротивлением источника тока пренебречь. Сопротивлением катушки и проводов пренебречь.

- Медное кольцо, диаметр которого 20 см, а диаметр провода кольца 2 мм, **C5** однородном Плоскость расположено В магнитном поле. кольца перпендикулярна вектору магнитной индукции. Определите модуль скорости изменения магнитной индукции поля со временем, если при этом в кольце Удельное возникает индукционный ток 10 A. сопротивление $\rho_{Cu} = 1,72 \cdot 10^{-8} \, \text{Om} \cdot \text{M}.$
- Фотон с длиной волны, соответствующей красной границе фотоэффекта, выбивает электрон из металлической пластинки (катода) сосуда, из которого откачан воздух. Электрон разгоняется однородным электрическим полем напряженностью E. Пролетев путь $S = 5 \cdot 10^{-4}$ м, он приобретает скорость $\upsilon = 3 \cdot 10^6$ м/с. Какова напряженность электрического поля? Релятивистские эффекты не учитывать.

Инструкция по проверке и оценке работ учащихся по физике

Вариант 5

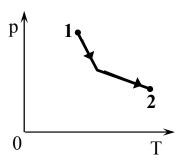
Часть 1

За правильный ответ на каждое задание части 1 ставится 1 балл. Если указаны два и более ответов (в том числе правильный), неверный ответ или ответ отсутствует -0 баллов.

De	2001 July 5
	приант 5
Номер задания	
1	3
3	1
3	4
5	1
5	1
6	3
7	3 2 4
8	
9	2
10	2 3 2
11	2
12	4
13	4
14	3 2 2
15	2
16	
17	1
18	3
19	2
20	1
21	4
22	2
23	2 3 2
24	
25	4

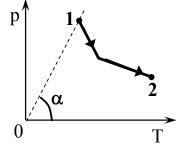
Задание с кратким ответом считается выполненным верно, если в заданиях B1–B4 правильно указана последовательность цифр.

За полный правильный ответ ставится 2 балла, 1 балл – допущена одна ошибка; за неверный ответ (более одной ошибки) или его отсутствие – 0 баллов.


Номер задания	Правильный ответ
B1	122
B2	223
В3	24
B4	34

Часть 3КРИТЕРИИ ОЦЕНКИ ВЫПОЛНЕНИЯ ЗАДАНИЙ С РАЗВЕРНУТЫМ ОТВЕТОМ

Решения заданий C1–C6 части 3 (с развернутым ответом) оцениваются экспертной комиссией. На основе критериев, представленных в приведенных ниже таблицах, за выполнение каждого задания в зависимости от полноты и правильности данного учащимся ответа выставляется от 0 до 3 баллов.


C1

На диаграмме (см. рисунок) показан процесс изменения состояния идеального одноатомного газа. Опираясь на свои знания по молекулярной физике, объясните, как меняется объем газа по мере его перехода из состояния 1 в состояние 2.

Образец возможного решения

1. Объем газа будет постоянно увеличиваться.

2. Согласно закону Клапейрона-Менделеева, объем идеального газа обратно пропорционален его давлению и прямо пропорционален

температуре: $V = \nu R \frac{1}{p} T$, где ν — количество вещества (газа).

Поскольку р/Т, например, в состоянии 1, равен тангенсу угла наклона проведенной пунктиром изохоры (прямой, соединяющей точку 1 на диаграмме с началом координат), то объем газа в состоянии 1 $V = vR \frac{1}{tg\alpha}$.

3. По мере перемещения вправо и вниз вдоль диаграммы точки, показывающей состояние газа, тангенс угла наклона проходящей через эту точку изохоры монотонно уменьшается. Следовательно, в данном процессе объем газа монотонно возрастает.

Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее	3
правильный ответ (в данном случае $n.1$), и полное верное	İ
объяснение (в данном случае $-n.2-3$) с указанием наблюдаемых	İ
явлений и законов (в данном случае – уравнение Менделеева-	ı
Клапейрона)	
Приведено решение и дан верный ответ, но имеется один из	2
следующих недостатков:	ı
— В объяснении содержатся лишь общие рассуждения без	i
привязки к конкретной ситуации задачи, хотя указаны все	i
необходимые физические явления и законы.	1
ИЛИ	i
— Рассуждения, приводящие к ответу, представлены не в	1
полном объеме или в них содержатся логические недочеты.	i
ИЛИ	i
— Указаны не все физические явления и законы, необходимые	i
для полного правильного решения.	
Представлены записи, соответствующие одному из следующих	1
случаев:	ı
 Приведены рассуждения с указанием на физические явления 	ı
и законы, но дан неверный или неполный ответ.	1
ИЛИ	İ
 Приведены рассуждения с указанием на физические явления 	ı
и законы, но ответ не дан.	İ
ИЛИ	ı
 Представлен только правильный ответ без обоснований. 	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла.	

C2

Грузовой автомобиль с двумя ведущими осями массой M=4 т тянет за нерастяжимый трос вверх по уклону легковой автомобиль массой m=1 т, у которого выключен двигатель. С каким максимальным ускорением могут двигаться автомобили, если угол уклона составляет $\alpha = \arcsin 0.1$, а коэффициент трения между шинами грузового автомобиля и дорогой $\mu = 0.2$? Силой трения качения, действующей на легковой автомобиль, пренебречь. Массой колес пренебречь.

Образец возможного решения

Максимальная сила тяги, действующая на систему из двух автомобилей в направлении их движения, составляет $\mu Mg\cos\alpha$, где $\cos\alpha = \sqrt{0.99} \approx 1$.

Проекция равнодействующей сил, действующих на систему из двух автомобилей, на направление их движения:

 $F = \mu Mg \cos \alpha - Mg \sin \alpha - mg \sin \alpha$;

Второй закон Ньютона:

$$a = \frac{F}{M+m} = g\left(\frac{M}{M+m} \cdot \mu \cos \alpha - \sin \alpha\right).$$

Численное значение ускорения: $a = 0.6 \text{ м/c}^2$.

Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее следующие	3
элементы:	
1) правильно записаны формулы, выражающие физические законы,	
применение которых необходимо для решения задачи выбранным	
способом (в данном решении – ІІ закон Ньютона, формула расчёта	
силы трения скольжения);	
2) проведены необходимые математические преобразования и	
расчеты, приводящие к правильному числовому ответу, и	
представлен ответ; при этом допускается решение «по частям» (с	
промежуточными вычислениями).	
Представленное решение содержит п.1 полного решения, но и имеет	2
один из следующих недостатков:	
- в необходимых математических преобразованиях или вычислениях	
допущена ошибка;	
ИЛИ	
- необходимые математические преобразования и вычисления	
логически верны, не содержат ошибок, но не закончены;	
ИЛИ	
– не представлены преобразования, приводящие к ответу, но записан	
правильный числовой ответ или ответ в общем виде;	
ИЛИ	
– решение содержит ошибку в необходимых математических	
преобразованиях и не доведено до числового ответа.	

Представлены записи, соответствующие одному из следующих случаев:

 представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа;

ИЛИ

– в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи;

ИЛИ

C3

– в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла.

0

Воздушный шар объемом 2500 м^3 и массой оболочки 400 кг имеет внизу отверстие, через которое воздух в шаре нагревается горелкой. До какой минимальной температуры нужно нагреть воздух в шаре, чтобы он взлетел вместе с грузом (корзиной и воздухоплавателем) массой 200 кг? Температура окружающего воздуха 7^0C , его плотность $1,2 \text{ кг/м}^3$. Оболочку шара считать нерастяжимой.

Образец возможного решения

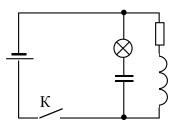
Шар поднимет груз при условии: $(M + m)g + m_{III}g = m_ag$, где M и m — масса оболочки шара и груза, m_{III} и m_a — масса воздуха в шаре и такого же по объему воздуха вне шара. Сокращая на g, имеем: $M + m = m_a - m_{III}$.

При нагревании воздуха в шаре его давление р и объем не меняются. Следовательно, согласно уравнению Клапейрона-Менделеева,

$$pV=rac{m_{_{I\!I\!I}}}{\mu}RT_{_{I\!I\!I}}=rac{m_{_{a}}}{\mu}RT_{a}$$
 , где μ — средняя молярная масса воздуха, $T_{_{I\!I\!I}}$ и T_{a}

— его температура внутри и вне шара. Отсюда:
$$m_{\text{ш}} = m_a \frac{T_a}{T_{\text{ш}}} = \rho V \frac{T_a}{T_{\text{ш}}};$$

$$m_a - m_{_{\rm III}} =
ho V (1 - \frac{T_a}{T_{_{\rm III}}}); \quad M + m =
ho V (1 - \frac{T_a}{T_{_{\rm III}}}).$$
 Следовательно,


$$(1 - \frac{T_a}{T_{III}}) = \frac{M + m}{\rho V} = \frac{200 + 400}{1,2 \cdot 2500} = 0,2; \quad \frac{T_a}{T_{III}} = 1 - 0,2 = 0,8;$$

$$T_{\text{III}} = \frac{T_a}{0.8} = \frac{280}{0.8} = 350 \text{ K.}$$
 Other: $T_{\text{III}} = 77^{0}\text{C.}$

Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее следующие	3
элементы:	
1) правильно записаны формулы, выражающие физические законы,	
применение которых необходимо для решения задачи выбранным	
способом (в данном решении – второй закон Ньютона, уравнение	
Менделеева-Клапейрона);	
2) проведены необходимые математические преобразования и	
расчеты, приводящие к правильному числовому ответу, и	
представлен ответ; при этом допускается решение «по частям» (с	
промежуточными вычислениями).	
Представленное решение содержит п.1 полного решения, но и имеет	2
один из следующих недостатков:	
– в необходимых математических преобразованиях или вычислениях	
допущена ошибка;	
ИЛИ	
- необходимые математические преобразования и вычисления	
логически верны, не содержат ошибок, но не закончены;	
ИЛИ	
– не представлены преобразования, приводящие к ответу, но записан	
правильный числовой ответ или ответ в общем виде;	
ИЛИ	
– решение содержит ошибку в необходимых математических	
преобразованиях и не доведено до числового ответа.	1
Представлены записи, соответствующие одному из следующих	1
случаев:	
- представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием,	
направленных на решение задачи, и ответа;	
ИЛИ	
 в решении отсутствует ОДНА из исходных формул, необходимая 	
для решения задачи (или утверждение, лежащее в основе решения),	
но присутствуют логически верные преобразования с имеющимися	
формулами, направленные на решение задачи;	
или	
 в ОДНОЙ из исходных формул, необходимых для решения задачи 	
(или утверждении, лежащем в основе решения), допущена ошибка,	
но присутствуют логически верные преобразования с имеющимися	
формулами, направленные на решение задачи.	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла.	

C4

В электрической цепи, показанной на рисунке, ЭДС источника тока равна 12 В; емкость конденсатора 2 мФ; индуктивность катушки = 5 мГн, сопротивление лампы 5 Ом и сопротивление резистора 3 Ом. В начальный момент времени ключ К замкнут. Какая энергия

выделится в лампе после размыкания ключа? Внутренним сопротивлением источника тока пренебречь. Сопротивлением катушки и проводов пренебречь.

Образец возможного решения

Пока ключ замкнут, через катушку L течет ток I, определяемый сопротивлением резистора: $I = \frac{\mathcal{E}}{R}$, конденсатор заряжен до напряжения: $U = \mathcal{E}$.

Энергия электромагнитного поля в катушке L: $\frac{LI^2}{2}$.

Энергия электромагнитного поля в конденсаторе $\frac{C\varepsilon^2}{2}$.

После размыкания ключа начинаются затухающие электромагнитные колебания, и вся энергия, запасенная в конденсаторе и катушке, выделится в лампе и резисторе:

$$E = \frac{C\varepsilon^2}{2} + \frac{LI^2}{2} = \frac{C\varepsilon^2}{2} + \frac{\varepsilon^2}{2R^2}L = 0,184$$
 Дж.

Согласно закону Джоуля–Ленца, выделяемая в резисторе мощность пропорциональна его сопротивлению. Следовательно, энергия 0,184 Дж распределится в лампе и резисторе пропорционально их сопротивлениям, и на лампу приходится $E_{\mathcal{I}} = \frac{5}{8}E = 0,115$ Дж.

Ответ: $E_{JI} = 0,115$ Дж.

Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее следующие	3
элементы:	
1) правильно записаны формулы, выражающие физические законы,	
применение которых необходимо для решения задачи выбранным	
способом (в данном решении – акон сохранения энергии, закон	
Джоуля-Ленца, закон Ома);	
2) проведены необходимые математические преобразования и	
расчеты, приводящие к правильному числовому ответу, и	
представлен ответ; при этом допускается решение «по частям» (с	
промежуточными вычислениями).	
Представленное решение содержит п.1 полного решения, но и имеет	2
один из следующих недостатков:	

в необходимых математических преобразованиях или вычислениях допущена ошибка;

ИЛИ

 необходимые математические преобразования и вычисления логически верны, не содержат ошибок, но не закончены;

ИЛИ

– не представлены преобразования, приводящие к ответу, но записан правильный числовой ответ или ответ в общем виде;

ИЛИ

 решение содержит ошибку в необходимых математических преобразованиях и не доведено до числового ответа.

Представлены записи, соответствующие одному из следующих случаев:

 представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения задачи, без каких-либо преобразований с их использованием, направленных на решение задачи, и ответа;

ИЛИ

– в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи;

ИЛИ

C5

– в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла.

0

1

Медное кольцо, диаметр которого 20 см, а диаметр провода кольца 2 мм, расположено в однородном магнитном поле. Плоскость кольца перпендикулярна вектору магнитной индукции. Определите модуль скорости изменения магнитной индукции поля со временем, если при этом в кольце возникает индукционный ток 10 А. Удельное сопротивление меди $\rho_{\text{Cu}} = 1,72 \cdot 10^{-8} \, \text{Ом} \cdot \text{м}$.

Образец возможного решения

ЭДС индукции в кольце $\varepsilon = -\frac{\Delta \Phi}{\Delta t}$.

Изменение магнитного потока за время Δt равно $\Delta \Phi = \Delta (BS)$, где S (площадь кольца) постоянна и равна $S = \frac{\pi D^2}{\Delta}$.

Следовательно, $ \varepsilon = S \left \frac{\Delta B}{\Delta t} \right $, откуда $\left \frac{\Delta B}{\Delta t} \right = \frac{\varepsilon}{S}$.	
С другой стороны, по закону Ома $\varepsilon = IR = I \frac{\rho l}{S_{np}}$, где S_{np} –	площадь
поперечного сечения медного провода $S_{np}=\frac{\pi d^2}{4}$, длина кольца $l=\pi D$).
Отсюда $\left \frac{\Delta B}{\Delta t} \right = \frac{16 \text{Ip}}{\pi \text{d}^2 \text{D}} \approx 1 \text{ Тл/c}.$ Ответ: $\left \frac{\Delta B}{\Delta t} \right \approx 1 \text{ Тл/c}.$	
Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее следующие	3
элементы:	
1) верно записаны формулы, выражающие физические законы,	
применение которых необходимо для решения задачи выбранным	
способом (в данном решении — закон Фарадея, закон Ома, формула	
для сопротивления длинного тонкого проводника, формула для	
магнитного потока);	
2) проведены необходимые математические преобразования и	
расчеты, приводящие к правильному числовому ответу, и	
представлен ответ. При этом допускается решение "по частям" (с	
промежуточными вычислениями).	
— Представлено правильное решение только в общем виде, без	2
каких-либо числовых расчетов.	
ИЛИ	
— Правильно записаны необходимые формулы, записан правильный	
ответ, но не представлены преобразования, приводящие к ответу.	
ИЛИ	
— В математических преобразованиях или вычислениях допущена	
ошибка, которая привела к неверному ответу.	
– В решении содержится ошибка в необходимых математических	1
преобразованиях и отсутствуют какие-либо числовые расчеты.	
ИЛИ	
- Записаны все исходные формулы, необходимые для решения	
задачи, но в ОДНОЙ из них допущена ошибка.	
ИЛИ	
– Отсутствует одна из формул, необходимых для решения задачи.	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла (использование	
Transportation and the second and th	

закона, отсутствие более одного исходного

неприменимого

уравнения, разрозненные записи и т.п.).

Радиоактивный препарат помещен в медный контейнер массой 0,5 кг. За 2 ч температура контейнера повысилась на 5,2 К. Известно, что данный препарат испускает α -частицы с энергией 5,3 МэВ, причем энергия всех α -частиц полностью переходит во внутреннюю энергию. Найдите активность препарата A, т.е. количество α -частиц, рождающихся в нем за 1 с. Теплоемкостью препарата и теплообменом с окружающей средой пренебречь.

Образец возможного решения	
За время Δt в препарате выделяется количество теплоты $Q = A \cdot \varepsilon \cdot \Delta t$, где	:
A — активность препарата, ϵ — энергия α -частицы.	
Изменение температуры контейнера ΔT определяется равенством	
$Q = c \cdot m \cdot \Delta T$, где c — удельная теплоемкость меди, m — масса контейнера.	
Выделившееся количество теплоты илет на нагревание контейнера Отсю	
$= \frac{\operatorname{cm} \Delta T}{\varepsilon \Delta t}. \text{Other: } A \approx 1,7 \cdot 10^{11} \text{ c}^{-1}.$	
Критерии оценки выполнения задания	Баллы
Приведено полное правильное решение, включающее следующие	3
элементы:	
1) правильно записаны формулы, выражающие физические законы,	
применение которых необходимо для решения задачи выбранным	
способом (в данном решении —формулы для количества теплоты);	
2) проведены необходимые математические преобразования и	
расчеты, приводящие к правильному числовому ответу, и	
представлен ответ. При этом допускается решение "по частям" (с	
промежуточными вычислениями).	2
Представленное решение содержит п.1 полного решения, но и имеет	2
один из следующих недостатков:	
– в необходимых математических преобразованиях или вычислениях	
допущена ошибка; ИЛИ	
 необходимые математические преобразования и вычисления 	
логически верны, не содержат ошибок, но не закончены;	
ИЛИ	
– не представлены преобразования, приводящие к ответу, но записан	
правильный числовой ответ или ответ в общем виде;	
или	
– решение содержит ошибку в необходимых математических	
преобразованиях и не доведено до числового ответа.	
	1
случаев:	
– представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо для решения	
задачи, без каких-либо преобразований с их использованием,	

направленных на решение задачи, и ответа; ИЛИ — в решении отсутствует ОДНА из исходных формул, необходимая для решения задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи; ИЛИ — в ОДНОЙ из исходных формул, необходимых для решения задачи (или утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи. Все случаи решения, которые не соответствуют вышеуказанным 0

критериям выставления оценок в 1, 2, 3 балла.